3.9.93 \(\int \frac {x \sqrt [4]{1+x}}{\sqrt [4]{1-x}} \, dx\) [893]

3.9.93.1 Optimal result
3.9.93.2 Mathematica [A] (verified)
3.9.93.3 Rubi [A] (warning: unable to verify)
3.9.93.4 Maple [C] (verified)
3.9.93.5 Fricas [C] (verification not implemented)
3.9.93.6 Sympy [F]
3.9.93.7 Maxima [F]
3.9.93.8 Giac [F]
3.9.93.9 Mupad [F(-1)]

3.9.93.1 Optimal result

Integrand size = 18, antiderivative size = 213 \[ \int \frac {x \sqrt [4]{1+x}}{\sqrt [4]{1-x}} \, dx=-\frac {1}{4} (1-x)^{3/4} \sqrt [4]{1+x}-\frac {1}{2} (1-x)^{3/4} (1+x)^{5/4}+\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{1+x}}\right )}{4 \sqrt {2}}-\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{1+x}}\right )}{4 \sqrt {2}}-\frac {\log \left (1+\frac {\sqrt {1-x}}{\sqrt {1+x}}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{1+x}}\right )}{8 \sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-x}}{\sqrt {1+x}}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{1+x}}\right )}{8 \sqrt {2}} \]

output
-1/4*(1-x)^(3/4)*(1+x)^(1/4)-1/2*(1-x)^(3/4)*(1+x)^(5/4)-1/8*arctan(-1+(1- 
x)^(1/4)*2^(1/2)/(1+x)^(1/4))*2^(1/2)-1/8*arctan(1+(1-x)^(1/4)*2^(1/2)/(1+ 
x)^(1/4))*2^(1/2)-1/16*ln(1-(1-x)^(1/4)*2^(1/2)/(1+x)^(1/4)+(1-x)^(1/2)/(1 
+x)^(1/2))*2^(1/2)+1/16*ln(1+(1-x)^(1/4)*2^(1/2)/(1+x)^(1/4)+(1-x)^(1/2)/( 
1+x)^(1/2))*2^(1/2)
 
3.9.93.2 Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.54 \[ \int \frac {x \sqrt [4]{1+x}}{\sqrt [4]{1-x}} \, dx=\frac {1}{8} \left (-2 (1-x)^{3/4} \sqrt [4]{1+x} (3+2 x)+\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x^2}}{\sqrt {1-x}-\sqrt {1+x}}\right )+\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{1-x^2}}{\sqrt {1-x}+\sqrt {1+x}}\right )\right ) \]

input
Integrate[(x*(1 + x)^(1/4))/(1 - x)^(1/4),x]
 
output
(-2*(1 - x)^(3/4)*(1 + x)^(1/4)*(3 + 2*x) + Sqrt[2]*ArcTan[(Sqrt[2]*(1 - x 
^2)^(1/4))/(Sqrt[1 - x] - Sqrt[1 + x])] + Sqrt[2]*ArcTanh[(Sqrt[2]*(1 - x^ 
2)^(1/4))/(Sqrt[1 - x] + Sqrt[1 + x])])/8
 
3.9.93.3 Rubi [A] (warning: unable to verify)

Time = 0.35 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.98, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {90, 60, 73, 854, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sqrt [4]{x+1}}{\sqrt [4]{1-x}} \, dx\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {1}{4} \int \frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}dx-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} \int \frac {1}{\sqrt [4]{1-x} (x+1)^{3/4}}dx-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{4} \left (-2 \int \frac {\sqrt {1-x}}{(x+1)^{3/4}}d\sqrt [4]{1-x}-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 854

\(\displaystyle \frac {1}{4} \left (-2 \int \frac {\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {1}{4} \left (-2 \left (\frac {1}{2} \int \frac {\sqrt {1-x}+1}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}-\frac {1}{2} \int \frac {1-\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {1}{4} \left (-2 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}+\frac {1}{2} \int \frac {1}{\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )-\frac {1}{2} \int \frac {1-\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{4} \left (-2 \left (\frac {1}{2} \left (\frac {\int \frac {1}{-\sqrt {1-x}-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\sqrt {1-x}-1}d\left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{4} \left (-2 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {1}{4} \left (-2 \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2}-\frac {2 \sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}+\frac {\int -\frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )\right )-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{4} \left (-2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )\right )-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} \left (-2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}-\frac {1}{2} \int \frac {\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}{\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )\right )-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{4} \left (-2 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{2 \sqrt {2}}\right )\right )-(1-x)^{3/4} \sqrt [4]{x+1}\right )-\frac {1}{2} (1-x)^{3/4} (x+1)^{5/4}\)

input
Int[(x*(1 + x)^(1/4))/(1 - x)^(1/4),x]
 
output
-1/2*((1 - x)^(3/4)*(1 + x)^(5/4)) + (-((1 - x)^(3/4)*(1 + x)^(1/4)) - 2*( 
(-(ArcTan[1 - (Sqrt[2]*(1 - x)^(1/4))/(1 + x)^(1/4)]/Sqrt[2]) + ArcTan[1 + 
 (Sqrt[2]*(1 - x)^(1/4))/(1 + x)^(1/4)]/Sqrt[2])/2 + (Log[1 + Sqrt[1 - x] 
- (Sqrt[2]*(1 - x)^(1/4))/(1 + x)^(1/4)]/(2*Sqrt[2]) - Log[1 + Sqrt[1 - x] 
 + (Sqrt[2]*(1 - x)^(1/4))/(1 + x)^(1/4)]/(2*Sqrt[2]))/2))/4
 

3.9.93.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.9.93.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.81 (sec) , antiderivative size = 449, normalized size of antiderivative = 2.11

method result size
risch \(\frac {\left (2 x +3\right ) \left (-1+x \right ) \left (1+x \right )^{\frac {1}{4}} \left (\left (1-x \right ) \left (1+x \right )^{3}\right )^{\frac {1}{4}}}{4 \left (-\left (-1+x \right ) \left (1+x \right )^{3}\right )^{\frac {1}{4}} \left (1-x \right )^{\frac {1}{4}}}+\frac {\left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \left (-x^{4}-2 x^{3}+2 x +1\right )^{\frac {1}{4}} x^{2}+2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \left (-x^{4}-2 x^{3}+2 x +1\right )^{\frac {1}{4}} x +\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} \sqrt {-x^{4}-2 x^{3}+2 x +1}\, x +\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \left (-x^{4}-2 x^{3}+2 x +1\right )^{\frac {1}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} \sqrt {-x^{4}-2 x^{3}+2 x +1}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \left (-x^{4}-2 x^{3}+2 x +1\right )^{\frac {3}{4}}-x^{3}-2 x^{2}-x}{\left (1+x \right )^{2}}\right )}{8}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \ln \left (\frac {\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{3} \left (-x^{4}-2 x^{3}+2 x +1\right )^{\frac {3}{4}}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} \sqrt {-x^{4}-2 x^{3}+2 x +1}\, x +\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right )^{2} \sqrt {-x^{4}-2 x^{3}+2 x +1}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \left (-x^{4}-2 x^{3}+2 x +1\right )^{\frac {1}{4}} x^{2}+2 \operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \left (-x^{4}-2 x^{3}+2 x +1\right )^{\frac {1}{4}} x +x^{3}+\operatorname {RootOf}\left (\textit {\_Z}^{4}+1\right ) \left (-x^{4}-2 x^{3}+2 x +1\right )^{\frac {1}{4}}+2 x^{2}+x}{\left (1+x \right )^{2}}\right )}{8}\right ) \left (\left (1-x \right ) \left (1+x \right )^{3}\right )^{\frac {1}{4}}}{\left (1+x \right )^{\frac {3}{4}} \left (1-x \right )^{\frac {1}{4}}}\) \(449\)

input
int(x*(1+x)^(1/4)/(1-x)^(1/4),x,method=_RETURNVERBOSE)
 
output
1/4*(2*x+3)*(-1+x)*(1+x)^(1/4)/(-(-1+x)*(1+x)^3)^(1/4)*((1-x)*(1+x)^3)^(1/ 
4)/(1-x)^(1/4)+(-1/8*RootOf(_Z^4+1)^3*ln(-(RootOf(_Z^4+1)^3*(-x^4-2*x^3+2* 
x+1)^(1/4)*x^2+2*RootOf(_Z^4+1)^3*(-x^4-2*x^3+2*x+1)^(1/4)*x+RootOf(_Z^4+1 
)^2*(-x^4-2*x^3+2*x+1)^(1/2)*x+RootOf(_Z^4+1)^3*(-x^4-2*x^3+2*x+1)^(1/4)+R 
ootOf(_Z^4+1)^2*(-x^4-2*x^3+2*x+1)^(1/2)+RootOf(_Z^4+1)*(-x^4-2*x^3+2*x+1) 
^(3/4)-x^3-2*x^2-x)/(1+x)^2)+1/8*RootOf(_Z^4+1)*ln((RootOf(_Z^4+1)^3*(-x^4 
-2*x^3+2*x+1)^(3/4)+RootOf(_Z^4+1)^2*(-x^4-2*x^3+2*x+1)^(1/2)*x+RootOf(_Z^ 
4+1)^2*(-x^4-2*x^3+2*x+1)^(1/2)+RootOf(_Z^4+1)*(-x^4-2*x^3+2*x+1)^(1/4)*x^ 
2+2*RootOf(_Z^4+1)*(-x^4-2*x^3+2*x+1)^(1/4)*x+x^3+RootOf(_Z^4+1)*(-x^4-2*x 
^3+2*x+1)^(1/4)+2*x^2+x)/(1+x)^2))/(1+x)^(3/4)*((1-x)*(1+x)^3)^(1/4)/(1-x) 
^(1/4)
 
3.9.93.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.24 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.77 \[ \int \frac {x \sqrt [4]{1+x}}{\sqrt [4]{1-x}} \, dx=-\frac {1}{4} \, {\left (2 \, x + 3\right )} {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}} - \left (\frac {1}{16} i + \frac {1}{16}\right ) \, \sqrt {2} \log \left (\frac {\sqrt {2} {\left (\left (i + 1\right ) \, x - i - 1\right )} + 2 \, {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}}}{x - 1}\right ) + \left (\frac {1}{16} i - \frac {1}{16}\right ) \, \sqrt {2} \log \left (\frac {\sqrt {2} {\left (-\left (i - 1\right ) \, x + i - 1\right )} + 2 \, {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}}}{x - 1}\right ) - \left (\frac {1}{16} i - \frac {1}{16}\right ) \, \sqrt {2} \log \left (\frac {\sqrt {2} {\left (\left (i - 1\right ) \, x - i + 1\right )} + 2 \, {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}}}{x - 1}\right ) + \left (\frac {1}{16} i + \frac {1}{16}\right ) \, \sqrt {2} \log \left (\frac {\sqrt {2} {\left (-\left (i + 1\right ) \, x + i + 1\right )} + 2 \, {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}}}{x - 1}\right ) \]

input
integrate(x*(1+x)^(1/4)/(1-x)^(1/4),x, algorithm="fricas")
 
output
-1/4*(2*x + 3)*(x + 1)^(1/4)*(-x + 1)^(3/4) - (1/16*I + 1/16)*sqrt(2)*log( 
(sqrt(2)*((I + 1)*x - I - 1) + 2*(x + 1)^(1/4)*(-x + 1)^(3/4))/(x - 1)) + 
(1/16*I - 1/16)*sqrt(2)*log((sqrt(2)*(-(I - 1)*x + I - 1) + 2*(x + 1)^(1/4 
)*(-x + 1)^(3/4))/(x - 1)) - (1/16*I - 1/16)*sqrt(2)*log((sqrt(2)*((I - 1) 
*x - I + 1) + 2*(x + 1)^(1/4)*(-x + 1)^(3/4))/(x - 1)) + (1/16*I + 1/16)*s 
qrt(2)*log((sqrt(2)*(-(I + 1)*x + I + 1) + 2*(x + 1)^(1/4)*(-x + 1)^(3/4)) 
/(x - 1))
 
3.9.93.6 Sympy [F]

\[ \int \frac {x \sqrt [4]{1+x}}{\sqrt [4]{1-x}} \, dx=\int \frac {x \sqrt [4]{x + 1}}{\sqrt [4]{1 - x}}\, dx \]

input
integrate(x*(1+x)**(1/4)/(1-x)**(1/4),x)
 
output
Integral(x*(x + 1)**(1/4)/(1 - x)**(1/4), x)
 
3.9.93.7 Maxima [F]

\[ \int \frac {x \sqrt [4]{1+x}}{\sqrt [4]{1-x}} \, dx=\int { \frac {{\left (x + 1\right )}^{\frac {1}{4}} x}{{\left (-x + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x*(1+x)^(1/4)/(1-x)^(1/4),x, algorithm="maxima")
 
output
integrate((x + 1)^(1/4)*x/(-x + 1)^(1/4), x)
 
3.9.93.8 Giac [F]

\[ \int \frac {x \sqrt [4]{1+x}}{\sqrt [4]{1-x}} \, dx=\int { \frac {{\left (x + 1\right )}^{\frac {1}{4}} x}{{\left (-x + 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate(x*(1+x)^(1/4)/(1-x)^(1/4),x, algorithm="giac")
 
output
integrate((x + 1)^(1/4)*x/(-x + 1)^(1/4), x)
 
3.9.93.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \sqrt [4]{1+x}}{\sqrt [4]{1-x}} \, dx=\int \frac {x\,{\left (x+1\right )}^{1/4}}{{\left (1-x\right )}^{1/4}} \,d x \]

input
int((x*(x + 1)^(1/4))/(1 - x)^(1/4),x)
 
output
int((x*(x + 1)^(1/4))/(1 - x)^(1/4), x)